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Overview

The aim of my talk is to

I describe quantum graphs, a notion generalising finite graphs within the
framework of operator algebras and noncommutative geometry,

I explain why one may wish to study these objects,

I explain how one can associate operator algebras to quantum graphs, in
analogy to the construction of Cuntz-Krieger algebras, and

I discuss some examples.
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Graphs

Definition

A (finite, directed) graph E = (E 0,E 1, s, r) is given by

I finite sets E 0,E 1 of vertices and edges, respectively,

I maps s, r : E 1 → E 0, called source and range.

Given e ∈ E 1 we say that e is an edge from s(e) to r(e).

We will only consider simple graphs, that is, graphs for which there is at most
one edge from v to w for all vertices v ,w ∈ E 0.
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Graphs

Definition

The adjacency matrix of a (simple) graph E = (E 0,E 1, s, r) is the matrix
A = AE ∈ ME0({0, 1}) determined by

A(v ,w) = 1⇔ (v ,w) ∈ E 1.

Consider again the example from the previous slide:

The adjacency matrix of this graph is

AE =


0 1 1 0
0 0 0 0
0 1 0 1
0 0 1 0


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Towards quantum graphs

Let us reformulate the notion of a (finite, directed, simple) graph
E = (E 0,E 1, s, r) in a more algebraic fashion.

To this end we

I replace the set E 0 of vertices with the finite dimensional commutative
C∗-algebra B = C(E 0), spanned linearly by the pairwise orthogonal
projections pv for v ∈ E 0.

I equip B with the “canonical” tracial state ψ : B → C given by

ψ(x) = trEnd(B)(x),

where B ⊂ End(B) via (left) multiplication.

I use the GNS-construction of ψ to view B = L2(B) as a (finite
dimensional) Hilbert space.

I view the adjacency matrix AE as a linear operator A : L2(B)→ L2(B) via

A(pv ) =
∑
w∈E0

A(v ,w)pw .
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Towards quantum graphs

Question

How to capture the fact that A : L2(B)→ L2(B) is the adjacency matrix of E
in terms of B = C(E 0) and ψ?

A ∈ ME0(C) = B(L2(B)) is the adjacency matrix of a (uniquely determined)
graph with vertex set E 0 iff the following equivalent conditions hold:

I A has entries in 0, 1

I A is an idempotent with respect to Schur product, that is, A ? A = A.

Let m : L2(B)⊗ L2(B)→ L2(B) be the multiplication map and m∗ its Hilbert
space adjoint. Explicitly,

m(pv ⊗ pw ) = δv,wpv , m∗(pv ) = dim(B)pv ⊗ pv .

One calculates

X ? Y =
1

dim(B)
m(X ⊗ Y )m∗

for the Schur product of matrices X ,Y ∈ ME0(C).

Conclusion

A is the adjacency matrix of a graph iff m(A⊗ A)m∗ = dim(B)A.
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Quantum graphs

The following definition goes back to work of Musto-Reutter-Verdon (2018)
and Brannan-Chirvasitu-Eifler-Harris-Paulsen-Su-Wasilewski (2019).

Definition

A (tracial, directed) quantum graph G = (B, ψ,A) consists of

I a finite dimensional C∗-algebra B,

I the canonical tracial state ψ : B → C obtained from the normalised trace
on End(B) via B ⊂ End(B),

I a linear operator A : L2(B)→ L2(B), called quantum adjacency matrix,
satisfying

m(A⊗ A)m∗ = dim(B)A.

Slogan

We are replacing the vertices of a graph by finite dimensional matrix algebras.

Lemma

A quantum graph (B, ψ,A) with B commutative is the same thing as a (finite,
directed, simple) graph.
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Some examples

Consider an arbitrary finite dimensional C∗-algebra B.

Example

I The complete quantum graph on B is (B, ψ,A) with

A(x) = dim(B)ψ(x)1

Classically, 1 · · · 1
...

...
1 · · · 1


I The trivial quantum graph on B is (B, ψ,A) with A = id : B → B.

I If B =
⊕N

i=1 Mni (C) and d =
⊕N

i=1 di ∈ B a direct sum of diagonal
matrices, then

A(x) = dx

defines a quantum graph iff Tr(di ) = ni for all i .
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Quantum graphs - alternative picture

A (simple) graph G = (E 0,E 1, r , s) is completely determined by the edge
relation R ⊂ E 0 × E 0, where (v ,w) ∈ R iff v = s(e),w = r(e) for e ∈ E 1.

Consider the subspace SG ⊂ B(l2(E 0)) spanned by all rank-one operators ev,w
with (v ,w) ∈ E 1. We may think of ev,w as the “edge operator” associated with
(v ,w).

Definition (Weaver 2010)

Let H be a finite dimensional Hilbert space and let B ⊂ B(H) be a C∗-algebra.
A quantum graph on B is a B ′-B ′-bimodule S ⊂ B(H).

The bimodule contains the “edge operators” connecting “quantum vertices” in
the graph.
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Comparison between the two approaches

Given a finite dimensional Hilbert space H and a C∗-algebra B ⊂ B(H), an
idempotent P =

∑
ai ⊗ bopp

i ∈ B ⊗ Bopp determines a B ′-B ′-bimodule
S ⊂ B(H) via

S = P · B(H) =

{∑
aiXbi | X ∈ B(H)

}
.

Here B ′ is the commutant of B.

Lemma

Any idempotent P ∈ B ⊗ Bopp arises as Choi-Jamoi lkowski matrix of a
quantum adjacency matrix A via

P =
1

dim(B)
(A⊗ 1)m∗(1).

Conclusion

Quantum adjacency matrices are the same thing as direct sum decompositions
B(H) = S ⊕ R of B ′-B ′-bimodules.

In particular, there are many quantum graphs not coming from classical graphs.
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Quantum graphs “in nature”

Quantum graphs appear in

I the graph isomorphism game and the study of quantum symmetry groups
of graphs

I quantum teleportation and superdense coding schemes

I the definition of zero-error capacity of quantum channels

...and probably more applications yet to be discovered.
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A generalisation

Instead of working with the the canonical tracial state on B one may consider
more general faithful states ψ : B → C.

Write L2(B) = L2(B, ψ) for the GNS-construction of ψ and let
m : L2(B)⊗ L2(B)→ L2(B) be the multiplication map.

Definition

If δ > 0 then ψ : B → C is called a δ-form if mm∗ = δ2 id.

Any finite dimensional C∗-algebra admits a unique tracial δ-form with
δ2 = dim(B).

Definition

A (directed) quantum graph G = (B, ψ,A) consists of

I a finite dimensional C∗-algebra B,

I a δ-form ψ : B → C,

I a linear operator A : L2(B)→ L2(B), called quantum adjacency matrix,
satisfying

m(A⊗ A)m∗ = δ2A.
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Cuntz-Krieger algebras

Definition

Let A ∈ MN(Z) be a matrix with entries A(i , j) ∈ {0, 1}. The Cuntz-Krieger
algebra OA is the universal C∗-algebra generated by partial isometries
S1, . . . , SN with mutually orthogonal ranges, satisfying

S∗i Si =
N∑
j=1

A(i , j)SjS
∗
j

for all 1 ≤ i ≤ N.

Example

Let A = id ∈ MN(Z). Then OA = C(S1)⊕ · · · ⊕ C(S1) is the direct product of
N copies of C(S1).

Example

If A = (aij) ∈ MN(Z) with aij = 1 for all i , j then OA = ON is the Cuntz
algebra.
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Free Cuntz-Krieger algebras

Definition

Let A ∈ MN(Z) be a matrix with entries A(i , j) ∈ {0, 1}. The free
Cuntz-Krieger algebra FOA is the the universal C∗-algebra generated by partial
isometries S1, . . . , SN , satisfying

S∗i Si =
N∑
j=1

A(i , j)SjS
∗
j

for all 1 ≤ i ≤ N.

The only difference is that we do not require the partial isometries Si to have
mutually orthogonal ranges.

Example

Let A = id ∈ MN(Z). Then FOA = C(S1) ∗ · · · ∗ C(S1) is the non-unital free
product of N copies of C(S1).

Example
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Free Cuntz-Krieger algebras

Question

What is the relation between free Cuntz-Krieger algebras and Cuntz-Krieger
algebras in general?

Theorem

Let A ∈ MN(Z) be a matrix with entries A(i , j) ∈ {0, 1}. The canonical
quotient map

FOA → OA

is a KK-equivalence.

The proof is an adaption of a well-known argument due to Cuntz showing that
a non-unital free product A ∗ B is KK-equivalent to A⊕ B.
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Quantum Cuntz-Krieger algebras

Let G = (B, ψ,A) be a directed quantum graph.

We shall say that a quantum Cuntz-Krieger G-family in a C∗-algebra D is a
linear map s : B → D such that

a) µD(id⊗µD)(s ⊗ s∗ ⊗ s)(id⊗m∗)m∗ = s

b) µD(s∗ ⊗ s)m∗ = µD(s ⊗ s∗)m∗A.

Here µD : D ⊗ D → D is the multiplication map for D and s∗(b) = s(b∗)∗ for
b ∈ B.

Definition

Let G = (B, ψ,A) be a directed quantum graph. The quantum Cuntz-Krieger
algebra FO(G) is the universal C∗-algebra generated by a quantum
Cuntz-Krieger G-family S : B → FO(G).
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Example: Classical graphs

Let E = (E 0,E 1, r , s) be a graph with N vertices.

The associated quantum graph G = (B, ψ,A) has B = C(E 0) = CN as
underlying C∗-algebra, equipped with the canonical trace ψ.
If AE denotes the adjacency matrix of E then

A(ei ) =
N∑
j=1

AE (i , j)ej

determines a quantum adjacency matrix A : L2(B)→ L2(B).

Proposition

Let G = (B, ψ,A) be the quantum graph corresponding to the classical graph
E as above. Then the free Cuntz-Krieger algebra associated with the adjacency
matrix AE is canonically isomorphic to the quantum Cuntz-Krieger algebra
FO(G).
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Example: Classical graphs

Proof.

Consider Si = NS(ei ) ∈ FO(G). Then

SiS
∗
i Si = N3µ(id⊗µ)(S(ei )⊗ S∗(ei )⊗ S(ei ))

= Nµ(id⊗µ)(S ⊗ S∗ ⊗ S)(id⊗m∗)m∗(ei )

= NS(ei ) = Si

and

S∗i Si = N2µ(S∗ ⊗ S)(ei ⊗ ei ) = Nµ(S∗ ⊗ S)m∗(ei )

= Nµ(S ⊗ S∗)m∗(A(ei ))

= N2
N∑
j=1

AE (i , j)µ(S ⊗ S∗)(ej ⊗ ej)

=
N∑
j=1

AE (i , j)SjS
∗
j

for all i . This yields a ∗-isomorphism FOAE → FO(G).
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Example: Trivial quantum graphs

Let B = MN(C) with its normalised trace tr : B → C.

The trivial quantum graph TMN = (B, tr,A) is determined by the quantum
adjacency matrix A(x) = x .

Lemma

The quantum Cuntz-Krieger algebra C∗-algebra FO(TMN) is the universal
C∗-algebra with generators Sij for 1 ≤ i , j ≤ N satisfying the relations∑

kl

SikS∗lkSlj = Sij∑
k

S∗kiSkj =
∑
k

SikS∗jk

for all i , j .

If we set S = (Sij) ∈ MN(FO(TMN)) then the relations above read

SS∗S = S , S∗S = SS∗.

That is, we may say that FO(TMN) is the universal C∗-algebra generated by a
normal N × N-matrix partial isometry.
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C∗-algebra with generators Sij for 1 ≤ i , j ≤ N satisfying the relations∑

kl

SikS∗lkSlj = Sij∑
k

S∗kiSkj =
∑
k

SikS∗jk

for all i , j .

If we set S = (Sij) ∈ MN(FO(TMN)) then the relations above read

SS∗S = S , S∗S = SS∗.

That is, we may say that FO(TMN) is the universal C∗-algebra generated by a
normal N × N-matrix partial isometry.
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Example: Trivial quantum graphs

It is easy to check that FO(TMN) maps onto Brown’s algebra Unc
N , the

universal C∗-algebra generated by the entries of a unitary N × N-matrix
u = (uij), by sending Sij to uij .

This shows in particular that FO(TMN) for N > 1 is not nuclear.

We may also map FO(TMN) onto the non-unital free product C ∗ · · · ∗ C of N
copies of C, by sending Sij to δij1i , where 1i denotes the unit element in the
i-th copy of C.

This shows that the algebra FO(TMN) is not unital for N > 1.

Conclusion

The algebra FO(TMN) is neither unital, nuclear, nor simple.



41

Example: Trivial quantum graphs

It is easy to check that FO(TMN) maps onto Brown’s algebra Unc
N , the

universal C∗-algebra generated by the entries of a unitary N × N-matrix
u = (uij), by sending Sij to uij .

This shows in particular that FO(TMN) for N > 1 is not nuclear.

We may also map FO(TMN) onto the non-unital free product C ∗ · · · ∗ C of N
copies of C, by sending Sij to δij1i , where 1i denotes the unit element in the
i-th copy of C.

This shows that the algebra FO(TMN) is not unital for N > 1.

Conclusion

The algebra FO(TMN) is neither unital, nuclear, nor simple.



42

Example: Trivial quantum graphs

It is easy to check that FO(TMN) maps onto Brown’s algebra Unc
N , the

universal C∗-algebra generated by the entries of a unitary N × N-matrix
u = (uij), by sending Sij to uij .

This shows in particular that FO(TMN) for N > 1 is not nuclear.

We may also map FO(TMN) onto the non-unital free product C ∗ · · · ∗ C of N
copies of C, by sending Sij to δij1i , where 1i denotes the unit element in the
i-th copy of C.

This shows that the algebra FO(TMN) is not unital for N > 1.

Conclusion

The algebra FO(TMN) is neither unital, nuclear, nor simple.



43

Example: Trivial quantum graphs

Theorem

Let TMN be the trivial quantum graph as before. Then there exists a
∗-isomorphism

MN(FO(TMN)+) ∼= MN(C) ∗1 (C(S1)⊕ C),

and the quantum Cuntz-Krieger algebra FO(TMN) is KK-equivalent to C(S1)
for all N ∈ N. In particular

K0(FO(TMN)) = Z,
K1(FO(TMN)) = Z.

Here ∗1 denotes the unital free product and FO(TMN)+ is the minimal
unitarization of FO(TMN).

If we write S = (Sij) for the matrix of generators of FO(TMN), then

I the generator of K0(FO(TMN) is represented by the projection
S∗S ∈ MN(FO(TMN)),

I the generator of K1(FO(TMN) is represented by the unitary
S − (1− S∗S) ∈ MN(FO(TMN)+).
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Example: Complete quantum graphs

Let B = MN(C) and tr : B → C the normalised trace.

The complete quantum graph K(MN(C), tr) on B is determined by the
quantum adjacency matrix A(x) = N2 tr(x).

Lemma

The quantum Cuntz-Krieger algebra FO(K(MN(C), tr)) is the universal
C∗-algebra with generators Sij for 1 ≤ i , j ≤ N satisfying the relations∑

kl

SikS∗lkSlj = Sij∑
r

S∗ri Srj = δijN
∑
rs

SrsS
∗
rs

for all i , j .
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Example: Complete quantum graphs

Lemma

Let FO(K(B, tr)) be as above. Then there exists a surjective ∗-homomorphism
φ : FO(K(B, tr))→ ON2 such that

φ(Sij) =
1

N1/2
sij

for all i , j , where sij are standard generators of the Cuntz algebra ON2 .

Proof.

We check∑
rs

φ(Sir )φ(Ssr )
∗φ(Ssj) =

∑
rs

1

N3/2
sir (ssr )

∗ssj =
1

N1/2
sij = φ(Sij),

∑
r

φ(Sri )
∗φ(Srj) =

∑
r

1

N
(sri )

∗srj = δij = δij
∑
kl

skl(skl)
∗

= δijN
∑
kl

φ(Skl)φ(Skl)
∗

as required.
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Example: Complete quantum graphs

Remark

This shows in particular that the canonical linear map S : B → FO(K(B, tr)) is
injective. This is not always the case for general quantum Cuntz-Krieger
algebras.

Our main structure result regarding FO(K(B, tr)) can be stated as follows.

Theorem

The map φ : FO(K(MN(C), tr))→ ON2 is an isomorphism.

In fact, we can prove the following stronger result:

Theorem

Let B be an n-dimensional C∗-algebra and let ψ : B → C be a δ-form
satisfying δ2 ∈ N. Then FO(K(B, ψ)) ∼= On.
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Quantum symmetries

A magic unitary N × N-matrix is a matrix u = (uij) such that

uij = uij = u∗ij

and
n∑

k=1

ukj = 1,
n∑

k=1

uik = 1

That is, all entries of u are projections and all row and columns sum to the
identity.

Example

A magic unitary u ∈ Mn(C) is the same thing as a permutation matrix.

Definition (Wang 1998)

The quantum permutation group S+
n is the universal C∗-algebra C(S+

n )
generated by the entries of a magic unitary n × n-matrix u = (uij).
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Quantum symmetries

If E = (E 0,E 1) is a simple finite graph then the automorphism group Aut(E)
consists of all bijections of E 0 which preserves the adjacency relation in E .

If |E 0| = N and A ∈ MN(Z) is the adjacency matrix of E , then this can be
expressed as

Aut(E) = {σ ∈ SN | σA = Aσ} ⊂ SN ,

where one views elements of the symmetric group as permutation matrices.

Definition (Banica)

The quantum automorphism group G+(E) of the graph E is the C∗-algebra

C(G+(E)) = C(S+
N )/〈uA = Au〉,

where u = (uij) ∈ MN(C(S+
N )) denotes the defining magic unitary matrix.

This yields a quantum subgroup of S+
N , which contains the classical

automorphism group Aut(E) as a quantum subgroup.
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Quantum symmetries

Let G = (B, ψ,A) be a quantum graph.

We say that an action β : B → B ⊗ C(G) of a compact quantum group G is

I ψ-preserving if (id⊗ψ)β(x) = β(x)1 for all x ∈ B,

I compatible with A : B → B if β ◦ A = (A⊗ id) ◦ β.

Definition

Let G = (B, ψ,A) be a quantum graph. The quantum automorphism group
G+(G) of G is the universal compact quantum group equipped with a
ψ-preserving action β : B → B ⊗ C(G+(G)) which is compatible with the
quantum adjacency matrix A.
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Quantum symmetries

That is, the quantum automorphism group G+(G) has the following universal
property.

If G is a compact quantum group and γ : B → B ⊗ C(G) an action of G which
preserves ψ and is compatible with A, then there exists a unique morphism
π : C(G+(G))→ C(G) such that

B
β //

γ
%%

B ⊗ C(G+(G))

id⊗π

��
B ⊗ C(G)

commutes.
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Quantum symmetries

Theorem

Let G = (B, ψ,A) be a quantum graph. Then the canonical action
β : B → B ⊗ C(G+(G)) of the quantum automorphism group of G induces an
action β̂ : FO(G)→ FO(G)⊗ C(G+(G)) such that

β̂(S(b)) = (S ⊗ id)β(b)

for all b ∈ B.

This generalises to actions of the linking algebras of quantum isomorphic
quantum graphs.

The latter is key to the proof of our main theorem on quantum Cuntz-Krieger
algebras associated with complete quantum graphs.


