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Overview

The

aim of my talk is to

describe quantum graphs, a notion generalising finite graphs within the
framework of operator algebras and noncommutative geometry,

explain why one may wish to study these objects,

explain how one can associate operator algebras to quantum graphs, in
analogy to the construction of Cuntz-Krieger algebras, and

discuss some examples.






A (finite, directed) graph E = (E°, E*, s, r) is given by
> finite sets E°, E* of vertices and edges, respectively,

» maps s, r: E' — E°, called source and range.

Given e € E' we say that e is an edge from s(e) to r(e).

We will only consider simple graphs, that is, graphs for which there is at most
one edge from v to w for all vertices v, w € E°.



The adjacency matrix of a (simple) graph E = (E°, E, s, r) is the matrix
A= Ac € Mgo({0,1}) determined by

Alv,w) =1 (v,w) € EL.



The adjacency matrix of a (simple) graph E = (E°, E, s, r) is the matrix
A= Ac € Mgo({0,1}) determined by

Alv,w) =1 (v,w) € EL.

Consider again the example from the previous slide:

The adjacency matrix of this graph is

0
A =

O = O
el e Ne)

= O O

0
0
0






Let us reformulate the notion of a (finite, directed, simple) graph
E = (E° E',s,r) in a more algebraic fashion.



Towards quantum graphs

Let us reformulate the notion of a (finite, directed, simple) graph
E = (E° E',s,r) in a more algebraic fashion.
To this end we

» replace the set E® of vertices with the finite dimensional commutative
C*-algebra B = C(E®), spanned linearly by the pairwise orthogonal
projections p, for v € E°.

» equip B with the “canonical” tracial state ¢ : B — C given by

P(x) = trena(s) (%),

where B C End(B) via (left) multiplication.

» use the GNS-construction of ) to view B = L*(B) as a (finite
dimensional) Hilbert space.

> view the adjacency matrix Ag as a linear operator A : L?(B) — L*(B) via

Alp) = Y A(v, w)pu.-

weEO



How to capture the fact that A : [?(B) — L?(B) is the adjacency matrix of E
in terms of B = C(E®) and v?



How to capture the fact that A : [?(B) — L?(B) is the adjacency matrix of E
in terms of B = C(E®) and v?

A € Mgo(C) = B(L*(B)) is the adjacency matrix of a (uniquely determined)
graph with vertex set E° iff the following equivalent conditions hold:

» A has entries in 0,1
» Ais an idempotent with respect to Schur product, that is, Ax A= A.



Towards quantum graphs

Question
How to capture the fact that A : L*(B) — L?(B) is the adjacency matrix of E
in terms of B = C(E®) and 7
A € Mgo(C) = B(L*(B)) is the adjacency matrix of a (uniquely determined)
graph with vertex set E° iff the following equivalent conditions hold:

» A has entries in 0,1

» A is an idempotent with respect to Schur product, that is, Ax A = A.
Let m: [*(B) ® L*(B) — [*(B) be the multiplication map and m* its Hilbert
space adjoint. Explicitly,

m(Pv 02y Pw) = by, wpv, m*(PV) = dim(B)pv & pv.

One calculates

1 *
X*Y_Wm(X®Y)m

for the Schur product of matrices X, Y € Mg (C).

Conclusion
A is the adjacency matrix of a graph iff m(A® A)m™ = dim(B)A.






Quantum graphs

The following definition goes back to work of Musto-Reutter-Verdon (2018)
and Brannan-Chirvasitu-Eifler-Harris-Paulsen-Su-Wasilewski (2019).
Definition
A (tracial, directed) quantum graph G = (B, ), A) consists of

» a finite dimensional C*-algebra B,

» the canonical tracial state ¢ : B — C obtained from the normalised trace
on End(B) via B C End(B),

> a linear operator A : [*(B) — L*(B), called quantum adjacency matrix,
satisfying
m(A® A)m" = dim(B)A.

Slogan

We are replacing the vertices of a graph by finite dimensional matrix algebras.



Quantum graphs

The following definition goes back to work of Musto-Reutter-Verdon (2018)
and Brannan-Chirvasitu-Eifler-Harris-Paulsen-Su-Wasilewski (2019).

Definition
A (tracial, directed) quantum graph G = (B, ), A) consists of
» a finite dimensional C*-algebra B,

» the canonical tracial state ¢ : B — C obtained from the normalised trace
on End(B) via B C End(B),

> a linear operator A : [*(B) — L*(B), called quantum adjacency matrix,
satisfying
m(A® A)m" = dim(B)A.

Slogan

We are replacing the vertices of a graph by finite dimensional matrix algebras.

Lemma

A quantum graph (B, 1, A) with B commutative is the same thing as a (finite,
directed, simple) graph.






Consider an arbitrary finite dimensional C*-algebra B.



Some examples

Consider an arbitrary finite dimensional C*-algebra B.

» The complete quantum graph on B is (B, 1, A) with
A(x) = dim(B)(x)1

Classically,

1 ... 1
» The trivial quantum graph on B is (B,,A) with A=id: B — B.



Some examples

Consider an arbitrary finite dimensional C*-algebra B.

» The complete quantum graph on B is (B, 1, A) with
A(x) = dim(B)(x)1

Classically,

1 ... 1
» The trivial quantum graph on B is (B,,A) with A=id: B — B.

> If B=@N, M,(C) and d = @, d: € B a direct sum of diagonal
matrices, then
A(x) = dx

defines a quantum graph iff Tr(d;) = n; for all i.






Quantum graphs - alternative picture

A (simple) graph G = (E°, E*, r, s) is completely determined by the edge
relation R C E° x E°, where (v, w) € R iff v = s(e), w = r(e) for e € E'.

Consider the subspace Sg C B(/>(E®)) spanned by all rank-one operators e, ..,
with (v, w) € E*. We may think of e, as the “edge operator” associated with
(v, w).

Definition (Weaver 2010)

Let H be a finite dimensional Hilbert space and let B C B(H) be a C™-algebra.
A quantum graph on B is a B’-B’-bimodule S C B(H).

The bimodule contains the “edge operators” connecting “quantum vertices” in
the graph.



Comparison between the two approaches

Given a finite dimensional Hilbert space H and a C*-algebra B C B(H), an
idempotent P =3 a; ® b € B ® B*" determines a B’-B’-bimodule
S C B(H) via

S=P-B(H) = {Za,-Xb,— | X € B(H)}.

Here B’ is the commutant of B.

Lemma

Any idempotent P € B ® B arises as Choi-Jamoitkowski matrix of a
quantum adjacency matrix A via
1

P= Gm@ A eV Q)

Conclusion

Quantum adjacency matrices are the same thing as direct sum decompositions
B(H) = S & R of B’-B’-bimodules.

In particular, there are many quantum graphs not coming from classical graphs.



Quantum graphs “in nature”

Quantum graphs appear in

» the graph isomorphism game and the study of quantum symmetry groups
of graphs

» quantum teleportation and superdense coding schemes

» the definition of zero-error capacity of quantum channels

...and probably more applications yet to be discovered.






Instead of working with the the canonical tracial state on B one may consider
more general faithful states ¢ : B — C.



Instead of working with the the canonical tracial state on B one may consider
more general faithful states ¢ : B — C.

Write L?(B) = L%(B, ) for the GNS-construction of ¢ and let
m: L*(B) ® L>(B) — L*(B) be the multiplication map.

If § > 0 then ¢ : B — C is called a d-form if mm™* = §°id.



A generalisation

Instead of working with the the canonical tracial state on B one may consider
more general faithful states ¢ : B — C.

Write L?(B) = L*(B, ) for the GNS-construction of ¢ and let
m: L*(B) ® L>(B) — L*(B) be the multiplication map.

Definition
If 5§ > 0 then ¢y : B — C is called a §-form if mm* = §2id.

Any finite dimensional C*-algebra admits a unique tracial 6-form with
62 = dim(B).

Definition
A (directed) quantum graph G = (B, 1, A) consists of
» a finite dimensional C*-algebra B,
» a d-form ¢ : B — C,
> a linear operator A : L?(B) — L?(B), called quantum adjacency matrix,

satisfying
m(A® A)m* = §°A.






Cuntz-Krieger algebras

Definition

Let A € My(Z) be a matrix with entries A(7,j) € {0,1}. The Cuntz-Krieger
algebra O, is the universal C*-algebra generated by partial isometries
S1,..., Sy with mutually orthogonal ranges, satisfying

N
515 = A(L)SS
j=1

forall1 </i<N.

Let A=id € Mn(Z). Then Oa = C(S*) @ --- @ C(S") is the direct product of
N copies of C(S").

If A= (aj) € Mn(Z) with a; =1 for all i, then Oa = Oy is the Cuntz
algebra.






Free Cuntz-Krieger algebras

Definition

Let A € My(Z) be a matrix with entries A(i,j) € {0,1}. The free
Cuntz-Krieger algebra FO,4 is the the universal C*-algebra generated by partial
isometries S, ..., Sy, satisfying

N
S5 = 3" AG.)SS}
j=1
forall1 <i<N.

The only difference is that we do not require the partial isometries S; to have
mutually orthogonal ranges.

Let A=id € Mn(Z). Then FOs = C(S*) % --- * C(S*) is the non-unital free
product of N copies of C(S?).

If A= (aj) € Mn(Z) with aj = 1 for all i,j then FOx = Oy is (still) the Cuntz
algebra.



What is the relation between free Cuntz-Krieger algebras and Cuntz-Krieger
algebras in general?



What is the relation between free Cuntz-Krieger algebras and Cuntz-Krieger
algebras in general?

Let A € My(Z) be a matrix with entries A(i,j) € {0,1}. The canonical

quotient map
FOas — Oa

is a KK-equivalence.

The proof is an adaption of a well-known argument due to Cuntz showing that
a non-unital free product A x B is KK-equivalent to A ® B.






Quantum Cuntz-Krieger algebras

Let G = (B, v, A) be a directed quantum graph.

We shall say that a quantum Cuntz-Krieger G-family in a C*-algebra D is a
linear map s : B — D such that

a) pp(id@up)(s®s* @s)(idem*)m* =s
b) po(s* ® s)m™ = pup(s ® s*)m*A.

Here up : D ® D — D is the multiplication map for D and s*(b) = s(b*)* for
beB.

Definition
Let G = (B, v, A) be a directed quantum graph. The quantum Cuntz-Krieger

algebra FO(G) is the universal C*-algebra generated by a quantum
Cuntz-Krieger G-family S : B — FO(G).



Example: Classical graphs

Let E = (E° E',r,s) be a graph with N vertices.

The associated quantum graph G = (B, ), A) has B = C(E®) = C" as
underlying C*-algebra, equipped with the canonical trace 1.
If AE denotes the adjacency matrix of E then

N
Aler) =Y Ae(ii)e
=1
determines a quantum adjacency matrix A : [*(B) — L*(B).

Proposition

Let G = (B, 1, A) be the quantum graph corresponding to the classical graph
E as above. Then the free Cuntz-Krieger algebra associated with the adjacency
matrix Ag is canonically isomorphic to the quantum Cuntz-Krieger algebra

FO(G).



Example: Classical graphs

Proof.
Consider S; = NS(e;) € FO(G). Then

SiS5'S; = N3M(id up)(S(e) ® 5*(6';‘) ® S(ei))
= Nu(id@p)(S® 5™ ® S)(idem™)m’ (&)
= NS(e,') = 5,'

and
S'Si=N°u(S*®S)(ei ®e) = Nu(S* @ S)m*(e;)
= Nu(S ® S™)m"(A(e))

= N? ZAE(:',j)u(S ®5")(g®e)

N
= Ac(i,))S;S

j=1

for all i. This yields a *-isomorphism FOa, — FO(G).



Let B = My(C) with its normalised trace tr : B — C.

The trivial quantum graph TMy = (B, tr, A) is determined by the quantum
adjacency matrix A(x) = x.



Example: Trivial quantum graphs

Let B = Mn(C) with its normalised trace tr : B — C.

The trivial quantum graph TMy = (B, tr, A) is determined by the quantum
adjacency matrix A(x) = x.

Lemma

The quantum Cuntz-Krieger algebra C*-algebra FO(TMpy) is the universal
C*-algebra with generators Sjj for 1 < i, j < N satisfying the relations

> SkSiS; = Sj
kI
Z SkSK = Z SikSik
K K
for all i,j.

If we set S = (Sj) € Mn(FO(TMy)) then the relations above read
$5*S =38, 5*S =5s".

That is, we may say that FO(TMy) is the universal C*-algebra generated by a
normal N x N-matrix partial isometry.



It is easy to check that FO(TMy) maps onto Brown's algebra Uy, the
universal C*-algebra generated by the entries of a unitary N x N-matrix
u = (uj), by sending S; to uj.

This shows in particular that FO(TMy) for N > 1 is not nuclear.



Example: Trivial quantum graphs

It is easy to check that FO(TMpy) maps onto Brown's algebra Uy, the
universal C*-algebra generated by the entries of a unitary N x N-matrix
u = (ui), by sending Sj; to uj.

This shows in particular that FO(TMy) for N > 1 is not nuclear.
We may also map FO(TMpy) onto the non-unital free product C - - % C of N
copies of C, by sending S to d;;1;, where 1; denotes the unit element in the

i-th copy of C.

This shows that the algebra FO(TMy) is not unital for N > 1.



Example: Trivial quantum graphs

It is easy to check that FO(TMpy) maps onto Brown's algebra Uy, the
universal C*-algebra generated by the entries of a unitary N x N-matrix
u = (ui), by sending Sj; to uj.

This shows in particular that FO(TMy) for N > 1 is not nuclear.

We may also map FO(TMpy) onto the non-unital free product C - - % C of N
copies of C, by sending S to d;;1;, where 1; denotes the unit element in the
i-th copy of C.

This shows that the algebra FO(TMy) is not unital for N > 1.

Conclusion
The algebra FO(TMpy) is neither unital, nuclear, nor simple.






Example: Trivial quantum graphs

Theorem
Let TMy be the trivial quantum graph as before. Then there exists a
x-isomorphism

My(FO(TMy)") = My(C) #1 (C(S') @ C),

and the quantum Cuntz-Krieger algebra FO(TMy) is KK-equivalent to C(S*)
for all N € N. In particular

Ko(FO(TMp)) =
Ki(FO(TMy)) =

Here *; denotes the unital free product and IF‘(’)(T/\/IN)Jr is the minimal
unitarization of FO(TMy).

If we write S = (Sj;) for the matrix of generators of FO(TMy), then
> the generator of Ko(FO(TMy) is represented by the projection
5*S € Mn(FO(TMn)),

> the generator of Ki(FO(TMy) is represented by the unitary
S —(1—5*S) € Mn(FO(TMpn)T).






Let B = Mpn(C) and tr : B — C the normalised trace.

The complete quantum graph K(Mu(C),tr) on B is determined by the
quantum adjacency matrix A(x) = N tr(x).



Example: Complete quantum graphs

Let B = My(C) and tr : B — C the normalised trace.

The complete quantum graph K(Mpy(C),tr) on B is determined by the
quantum adjacency matrix A(x) = N?tr(x).

Lemma

The quantum Cuntz-Krieger algebra FO(K(Mn(C),tr)) is the universal
C*-algebra with generators Sjj for 1 < i, j < N satisfying the relations

> SuSikS; =S

Kl
> S5iS;=0;iN>  S.Sy:

for all i,j.






Example: Complete quantum graphs

Lemma

Let FO(K(B,tr)) be as above. Then there exists a surjective x-homomorphism
¢ : FO(K(B,tr)) — Op2 such that

1
B(Si) = N2

for all i, j, where s; are standard generators of the Cuntz algebra Opp.

Proof.
We check

Z¢ 5:r)¢7 Ssr) (Z7 SJ Z N3/2 S/r(SSr) Ssj = N1/2 ¢(SU)

* 1 3 *
> 6(5a)"6(S9) = Y ilsa)"sy = 85 = 85> sulsu)
- . K
= 6Ny ¢(Su)p(Su)*
kl

as required. O



This shows in particular that the canonical linear map S : B — FO(K(B, tr)) is
injective. This is not always the case for general quantum Cuntz-Krieger
algebras.



This shows in particular that the canonical linear map S : B — FO(K(B, tr)) is

injective. This is not always the case for general quantum Cuntz-Krieger
algebras.

Our main structure result regarding FO(K (B, tr)) can be stated as follows.

The map ¢ : FO(K(Mn(C),tr)) — Ope is an isomorphism.



This shows in particular that the canonical linear map S : B — FO(K(B, tr)) is

injective. This is not always the case for general quantum Cuntz-Krieger
algebras.

Our main structure result regarding FO(K (B, tr)) can be stated as follows.

The map ¢ : FO(K(Mn(C),tr)) — Ope is an isomorphism.

In fact, we can prove the following stronger result:

Let B be an n-dimensional C*-algebra and let ¢ : B — C be a -form
satisfying 6° € N. Then FO(K(B,v)) & O,.






A magic unitary N x N-matrix is a matrix u = (uj;) such that

_ _ *
ujj = ujj = uj

and

n n
E Ukj = 1, E Ujx = 1
k=1 k=1

That is, all entries of u are projections and all row and columns sum to the
identity.

A magic unitary u € M,(C) is the same thing as a permutation matrix.



A magic unitary N x N-matrix is a matrix u = (uj;) such that

. _ *
ujj = ujj = uj

and

n n
E Uk = 1, E Uik = 1
k=1 k=1

That is, all entries of u are projections and all row and columns sum to the
identity.

A magic unitary u € M,(C) is the same thing as a permutation matrix.

The quantum permutation group S, is the universal C*-algebra C(S;})
generated by the entries of a magic unitary n X n-matrix u = (uj).



Quantum symmetries

If E = (E° E') is a simple finite graph then the automorphism group Aut(E)
consists of all bijections of E® which preserves the adjacency relation in E.

If |[E°| = N and A € My(Z) is the adjacency matrix of E, then this can be

expressed as
Aut(E) ={oc € Sn | A= Ao} C Sy,

where one views elements of the symmetric group as permutation matrices.



Quantum symmetries

If E = (E° E') is a simple finite graph then the automorphism group Aut(E)
consists of all bijections of E® which preserves the adjacency relation in E.

If |[E°| = N and A € My(Z) is the adjacency matrix of E, then this can be

expressed as
Aut(E) ={oc € Sn | A= Ao} C Sy,

where one views elements of the symmetric group as permutation matrices.

Definition (Banica)

The quantum automorphism group G*(E) of the graph E is the C*-algebra
C(GT(E)) = C(Sy)/{uA = Au),

where u = (u;;) € Mn(C(S})) denotes the defining magic unitary matrix.

This yields a quantum subgroup of Sy, which contains the classical
automorphism group Aut(E) as a quantum subgroup.



Let G = (B, ), A) be a quantum graph.

We say that an action 8: B —+ B ® C(G) of a compact quantum group G is
> 1)-preserving if (id ®y)B(x) = B(x)1 for all x € B,
> compatible with A: B — B if Bo A= (A®id) o .



Quantum symmetries

Let G = (B, v, A) be a quantum graph.

We say that an action 8: B — B ® C(G) of a compact quantum group G is
» -preserving if (id ®)B(x) = B(x)1 for all x € B,
» compatible with A: B — Bif o A= (A®id)o 3.

Definition

Let G = (B, ¥, A) be a quantum graph. The quantum automorphism group
GT(G) of G is the universal compact quantum group equipped with a
1p-preserving action 3 : B — B ® C(G1(G)) which is compatible with the
quantum adjacency matrix A.



Quantum symmetries

That is, the quantum automorphism group G*(G) has the following universal
property.

If G is a compact quantum group and v : B — B ® C(G) an action of G which
preserves v and is compatible with A, then there exists a unique morphism
7 C(GT(G)) — C(G) such that

B~ B C(6*(Q)

g

B® C(G)

commutes.



Quantum symmetries

Theorem

Let G = (B,, A) be a quantum graph. Then the canonical action
B:B—>B® C(G™(G)) of the quantum automorphism group of G induces an
action 3 : FO(G) — FO(G) ® C(G'(G)) such that

B(S(b)) = (S ®id)B(b)
for all b € B.

This generalises to actions of the linking algebras of quantum isomorphic
quantum graphs.

The latter is key to the proof of our main theorem on quantum Cuntz-Krieger
algebras associated with complete quantum graphs.



