Quantum Cuntz-Krieger algebras

Christian Voigt based on joint work with M. Brannan, K. Eifler and M. Weber

University of Glasgow http://www.maths.gla.ac.uk/~cvoigt/index.xhtml

25 January 2021

Overview

The aim of my talk is to

- describe quantum graphs, a notion generalising finite graphs within the framework of operator algebras and noncommutative geometry,
- explain why one may wish to study these objects,
- explain how one can associate operator algebras to quantum graphs, in analogy to the construction of Cuntz-Krieger algebras, and
- discuss some examples.

Graphs

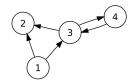
Definition

A (finite, directed) graph $E = (E^0, E^1, s, r)$ is given by

- ▶ finite sets E^0 , E^1 of *vertices* and *edges*, respectively,
- ▶ maps $s, r : E^1 \to E^0$, called *source* and *range*.

Given $e \in E^1$ we say that e is an edge from s(e) to r(e).

We will only consider *simple* graphs, that is, graphs for which there is at most one edge from v to w for all vertices $v, w \in E^0$.



Graphs

Definition

The adjacency matrix of a (simple) graph $E=(E^0,E^1,s,r)$ is the matrix $A=A_E\in M_{E^0}(\{0,1\})$ determined by

$$A(v,w)=1\Leftrightarrow (v,w)\in E^1.$$

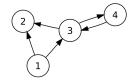
Graphs

Definition

The adjacency matrix of a (simple) graph $E=(E^0,E^1,s,r)$ is the matrix $A=A_E\in M_{E^0}(\{0,1\})$ determined by

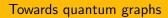
$$A(v,w)=1\Leftrightarrow (v,w)\in E^1.$$

Consider again the example from the previous slide:



The adjacency matrix of this graph is

$$A_E = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$



Let us reformulate the notion of a (finite, directed, simple) graph $E=(E^0,E^1,s,r)$ in a more algebraic fashion.

Let us reformulate the notion of a (finite, directed, simple) graph $E=(E^0,E^1,s,r)$ in a more algebraic fashion.

To this end we

- replace the set E^0 of vertices with the finite dimensional commutative C^* -algebra $B = C(E^0)$, spanned linearly by the pairwise orthogonal projections p_v for $v \in E^0$.
- lacktriangle equip B with the "canonical" tracial state $\psi:B\to\mathbb{C}$ given by

$$\psi(x)=\operatorname{tr}_{\operatorname{End}(B)}(x),$$

where $B \subset \text{End}(B)$ via (left) multiplication.

- use the GNS-construction of ψ to view $B=L^2(B)$ as a (finite dimensional) Hilbert space.
- lacktriangle view the adjacency matrix A_E as a linear operator $A:L^2(B) o L^2(B)$ via

$$A(p_v) = \sum_{w \in E^0} A(v, w) p_w.$$

Question

How to capture the fact that $A:L^2(B)\to L^2(B)$ is the adjacency matrix of E in terms of $B=C(E^0)$ and ψ ?

Question

How to capture the fact that $A: L^2(B) \to L^2(B)$ is the adjacency matrix of E in terms of $B = C(E^0)$ and ψ ?

 $A \in M_{E^0}(\mathbb{C}) = B(L^2(B))$ is the adjacency matrix of a (uniquely determined) graph with vertex set E^0 iff the following equivalent conditions hold:

- ► A has entries in 0,1
- ▶ *A* is an idempotent with respect to Schur product, that is, $A \star A = A$.

Question

How to capture the fact that $A: L^2(B) \to L^2(B)$ is the adjacency matrix of E in terms of $B = C(E^0)$ and ψ ?

 $A \in M_{E^0}(\mathbb{C}) = B(L^2(B))$ is the adjacency matrix of a (uniquely determined) graph with vertex set E^0 iff the following equivalent conditions hold:

- ► A has entries in 0,1
- ightharpoonup A is an idempotent with respect to Schur product, that is, $A \star A = A$.

Let $m: L^2(B) \otimes L^2(B) \to L^2(B)$ be the multiplication map and m^* its Hilbert space adjoint. Explicitly,

$$m(p_{\nu}\otimes p_{w})=\delta_{\nu,w}p_{\nu}, \qquad m^{*}(p_{\nu})=\dim(B)p_{\nu}\otimes p_{\nu}.$$

One calculates

$$X \star Y = \frac{1}{\dim(B)} m(X \otimes Y) m^*$$

for the *Schur product* of matrices $X, Y \in M_{F^0}(\mathbb{C})$.

Conclusion

A is the adjacency matrix of a graph iff $m(A \otimes A)m^* = \dim(B)A$.



Quantum graphs

The following definition goes back to work of Musto-Reutter-Verdon (2018) and Brannan-Chirvasitu-Eifler-Harris-Paulsen-Su-Wasilewski (2019).

Definition

A (tracial, directed) quantum graph $\mathcal{G} = (B, \psi, A)$ consists of

- ightharpoonup a finite dimensional C^* -algebra B,
- ▶ the canonical tracial state $\psi: B \to \mathbb{C}$ obtained from the normalised trace on End(B) via $B \subset \text{End}(B)$,
- ▶ a linear operator $A: L^2(B) \to L^2(B)$, called quantum adjacency matrix, satisfying

$$m(A \otimes A)m^* = \dim(B)A.$$

Slogan

We are replacing the vertices of a graph by finite dimensional matrix algebras.

Quantum graphs

The following definition goes back to work of Musto-Reutter-Verdon (2018) and Brannan-Chirvasitu-Eifler-Harris-Paulsen-Su-Wasilewski (2019).

Definition

A (tracial, directed) quantum graph $\mathcal{G} = (B, \psi, A)$ consists of

- ightharpoonup a finite dimensional C^* -algebra B,
- ▶ the canonical tracial state $\psi: B \to \mathbb{C}$ obtained from the normalised trace on End(B) via $B \subset \text{End}(B)$,
- ▶ a linear operator $A: L^2(B) \to L^2(B)$, called quantum adjacency matrix, satisfying

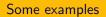
$$m(A \otimes A)m^* = \dim(B)A$$
.

Slogan

We are replacing the vertices of a graph by finite dimensional matrix algebras.

Lemma

A quantum graph (B, ψ, A) with B commutative is the same thing as a (finite, directed, simple) graph.



Some examples

Consider an arbitrary finite dimensional C^* -algebra B.

Some examples

Consider an arbitrary finite dimensional C^* -algebra B.

Example

▶ The *complete quantum graph* on B is (B, ψ, A) with

$$A(x) = \dim(B)\psi(x)1$$

Classically,

$$\begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$$

▶ The *trivial quantum graph* on B is (B, ψ, A) with $A = id : B \rightarrow B$.

Some examples

Consider an arbitrary finite dimensional C^* -algebra B.

Example

▶ The *complete quantum graph* on B is (B, ψ, A) with

$$A(x) = \dim(B)\psi(x)1$$

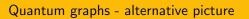
Classically,

$$\begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$$

- ▶ The trivial quantum graph on B is (B, ψ, A) with $A = id : B \rightarrow B$.
- ▶ If $B = \bigoplus_{i=1}^{N} M_{n_i}(\mathbb{C})$ and $d = \bigoplus_{i=1}^{N} d_i \in B$ a direct sum of diagonal matrices, then

$$A(x) = dx$$

defines a quantum graph iff $Tr(d_i) = n_i$ for all i.



Quantum graphs - alternative picture

A (simple) graph $\mathcal{G} = (E^0, E^1, r, s)$ is completely determined by the edge relation $R \subset E^0 \times E^0$, where $(v, w) \in R$ iff v = s(e), w = r(e) for $e \in E^1$.

Consider the subspace $S_{\mathcal{G}} \subset B(I^2(E^0))$ spanned by all rank-one operators $e_{v,w}$ with $(v,w) \in E^1$. We may think of $e_{v,w}$ as the "edge operator" associated with (v,w).

Definition (Weaver 2010)

Let H be a finite dimensional Hilbert space and let $B \subset B(H)$ be a C^* -algebra. A quantum graph on B is a B'-B'-bimodule $S \subset B(H)$.

The bimodule contains the "edge operators" connecting "quantum vertices" in the graph.

Comparison between the two approaches

Given a finite dimensional Hilbert space H and a C^* -algebra $B \subset B(H)$, an idempotent $P = \sum a_i \otimes b_i^{opp} \in B \otimes B^{opp}$ determines a B'-B'-bimodule $S \subset B(H)$ via

$$S = P \cdot B(H) = \bigg\{ \sum a_i X b_i \mid X \in B(H) \bigg\}.$$

Here B' is the commutant of B.

Lemma

Any idempotent $P \in B \otimes B^{opp}$ arises as Choi-Jamoiłkowski matrix of a quantum adjacency matrix A via

$$P=\frac{1}{\dim(B)}(A\otimes 1)m^*(1).$$

Conclusion

Quantum adjacency matrices are the same thing as direct sum decompositions $B(H) = S \oplus R$ of B'-B'-bimodules.

In particular, there are many quantum graphs not coming from classical graphs.

Quantum graphs "in nature"

Quantum graphs appear in

- the graph isomorphism game and the study of quantum symmetry groups of graphs
- quantum teleportation and superdense coding schemes
- ▶ the definition of zero-error capacity of quantum channels

...and probably more applications yet to be discovered.

Instead of working with the the canonical tracial state on B one may consider more general faithful states $\psi:B\to\mathbb{C}.$

Instead of working with the the canonical tracial state on B one may consider more general faithful states $\psi:B\to\mathbb{C}.$

Write $L^2(B) = L^2(B, \psi)$ for the GNS-construction of ψ and let $m: L^2(B) \otimes L^2(B) \to L^2(B)$ be the multiplication map.

Definition

If $\delta > 0$ then $\psi : B \to \mathbb{C}$ is called a δ -form if $mm^* = \delta^2$ id.

Instead of working with the the canonical tracial state on B one may consider more general faithful states $\psi:B\to\mathbb{C}$.

Write $L^2(B) = L^2(B, \psi)$ for the GNS-construction of ψ and let $m: L^2(B) \otimes L^2(B) \to L^2(B)$ be the multiplication map.

Definition

If $\delta > 0$ then $\psi : B \to \mathbb{C}$ is called a δ -form if $mm^* = \delta^2$ id.

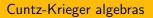
Any finite dimensional C^* -algebra admits a unique tracial δ -form with $\delta^2 = \dim(B)$.

Definition

A (directed) quantum graph $\mathcal{G} = (B, \psi, A)$ consists of

- ightharpoonup a finite dimensional C^* -algebra B,
- ightharpoonup a δ -form $\psi:B\to\mathbb{C}$,
- ▶ a linear operator $A: L^2(B) \to L^2(B)$, called quantum adjacency matrix, satisfying

$$m(A \otimes A)m^* = \delta^2 A.$$



Cuntz-Krieger algebras

Definition

Let $A \in M_N(\mathbb{Z})$ be a matrix with entries $A(i,j) \in \{0,1\}$. The Cuntz-Krieger algebra \mathcal{O}_A is the universal C^* -algebra generated by partial isometries S_1,\ldots,S_N with mutually orthogonal ranges, satisfying

$$S_i^* S_i = \sum_{j=1}^N A(i,j) S_j S_j^*$$

for all $1 \le i \le N$.

Example

Let $A = id \in M_N(\mathbb{Z})$. Then $\mathcal{O}_A = C(S^1) \oplus \cdots \oplus C(S^1)$ is the direct product of N copies of $C(S^1)$.

Example

If $A=(a_{ij})\in M_N(\mathbb{Z})$ with $a_{ij}=1$ for all i,j then $\mathcal{O}_A=\mathcal{O}_N$ is the Cuntz algebra.

Free Cuntz-Krieger algebras

Definition

Let $A \in M_N(\mathbb{Z})$ be a matrix with entries $A(i,j) \in \{0,1\}$. The free Cuntz-Krieger algebra $\mathbb{F}\mathcal{O}_A$ is the the universal C^* -algebra generated by partial isometries S_1,\ldots,S_N , satisfying

$$S_i^* S_i = \sum_{j=1}^N A(i,j) S_j S_j^*$$

for all $1 \le i \le N$.

The only difference is that we do *not* require the partial isometries S_i to have mutually orthogonal ranges.

Example

Let $A = id \in M_N(\mathbb{Z})$. Then $\mathbb{F}\mathcal{O}_A = C(S^1) * \cdots * C(S^1)$ is the non-unital free product of N copies of $C(S^1)$.

Example

If $A = (a_{ij}) \in M_N(\mathbb{Z})$ with $a_{ij} = 1$ for all i, j then $\mathbb{F}\mathcal{O}_A = \mathcal{O}_N$ is (still) the Cuntz algebra.

Free Cuntz-Krieger algebras

Question

What is the relation between free Cuntz-Krieger algebras and Cuntz-Krieger algebras in general?

Free Cuntz-Krieger algebras

Question

What is the relation between free Cuntz-Krieger algebras and Cuntz-Krieger algebras in general?

Theorem

Let $A \in M_N(\mathbb{Z})$ be a matrix with entries $A(i,j) \in \{0,1\}$. The canonical quotient map

$$\mathbb{F}\mathcal{O}_A \to \mathcal{O}_A$$

is a KK-equivalence.

The proof is an adaption of a well-known argument due to Cuntz showing that a non-unital free product A*B is KK-equivalent to $A\oplus B$.

Quantum Cuntz-Krieger algebras

Let $G = (B, \psi, A)$ be a directed quantum graph.

We shall say that a quantum Cuntz-Krieger $\mathcal G$ -family in a C^* -algebra D is a linear map $s:B\to D$ such that

- a) $\mu_D(\operatorname{id}\otimes\mu_D)(s\otimes s^*\otimes s)(\operatorname{id}\otimes m^*)m^*=s$
- b) $\mu_D(s^*\otimes s)m^* = \mu_D(s\otimes s^*)m^*A$.

Here $\mu_D: D \otimes D \to D$ is the multiplication map for D and $s^*(b) = s(b^*)^*$ for $b \in B$.

Definition

Let $\mathcal{G}=(B,\psi,A)$ be a directed quantum graph. The quantum Cuntz-Krieger algebra $\mathbb{F}\mathcal{O}(\mathcal{G})$ is the universal C^* -algebra generated by a quantum Cuntz-Krieger \mathcal{G} -family $\mathcal{S}:B\to\mathbb{F}\mathcal{O}(\mathcal{G})$.

Example: Classical graphs

Let $E = (E^0, E^1, r, s)$ be a graph with N vertices.

The associated quantum graph $\mathcal{G}=(B,\psi,A)$ has $B=C(E^0)=\mathbb{C}^N$ as underlying C^* -algebra, equipped with the canonical trace ψ . If A_E denotes the adjacency matrix of E then

$$A(e_i) = \sum_{j=1}^{N} A_E(i,j)e_j$$

determines a quantum adjacency matrix $A: L^2(B) \to L^2(B)$.

Proposition

Let $\mathcal{G}=(B,\psi,A)$ be the quantum graph corresponding to the classical graph E as above. Then the free Cuntz-Krieger algebra associated with the adjacency matrix A_E is canonically isomorphic to the quantum Cuntz-Krieger algebra $\mathbb{F}\mathcal{O}(\mathcal{G})$.

Proof.

Consider $S_i = NS(e_i) \in \mathbb{F}\mathcal{O}(\mathcal{G})$. Then

$$\begin{split} S_i S_i^* S_i &= N^3 \mu (\operatorname{id} \otimes \mu) (S(e_i) \otimes S^*(e_i) \otimes S(e_i)) \\ &= N \mu (\operatorname{id} \otimes \mu) (S \otimes S^* \otimes S) (\operatorname{id} \otimes m^*) m^*(e_i) \\ &= N S(e_i) = S_i \end{split}$$

and

$$S_i^*S_i = N^2\mu(S^*\otimes S)(e_i\otimes e_i) = N\mu(S^*\otimes S)m^*(e_i)$$

$$= N\mu(S\otimes S^*)m^*(A(e_i))$$

$$= N^2\sum_{j=1}^N A_E(i,j)\mu(S\otimes S^*)(e_j\otimes e_j)$$

$$= \sum_{i=1}^N A_E(i,j)S_jS_j^*$$

for all i. This yields a *-isomorphism $\mathbb{F}\mathcal{O}_{A_F} \to \mathbb{F}\mathcal{O}(\mathcal{G})$.

Let $B = M_N(\mathbb{C})$ with its normalised trace $\mathrm{tr}: B \to \mathbb{C}$.

The trivial quantum graph $TM_N=(B,{\rm tr},A)$ is determined by the quantum adjacency matrix A(x)=x.

Let $B = M_N(\mathbb{C})$ with its normalised trace $\mathrm{tr}: B \to \mathbb{C}$.

The trivial quantum graph $TM_N = (B, \operatorname{tr}, A)$ is determined by the quantum adjacency matrix A(x) = x.

Lemma

The quantum Cuntz-Krieger algebra C^* -algebra $\mathbb{F}\mathcal{O}(TM_N)$ is the universal C^* -algebra with generators S_{ij} for $1 \leq i, j \leq N$ satisfying the relations

$$\sum_{kl} S_{ik} S_{lk}^* S_{lj} = S_{ij} \ \sum_{k} S_{ki}^* S_{kj} = \sum_{k} S_{ik} S_{jk}^*$$

for all i, j.

If we set $S=(S_{ij})\in M_N(\mathbb{F}\mathcal{O}(TM_N))$ then the relations above read

$$SS^*S = S$$
, $S^*S = SS^*$.

That is, we may say that $\mathbb{F}\mathcal{O}(TM_N)$ is the universal C^* -algebra generated by a normal $N \times N$ -matrix partial isometry.

It is easy to check that $\mathbb{F}\mathcal{O}(TM_N)$ maps onto Brown's algebra U_N^{nc} , the universal C^* -algebra generated by the entries of a unitary $N \times N$ -matrix $u = (u_{ij})$, by sending S_{ij} to u_{ij} .

This shows in particular that $\mathbb{F}\mathcal{O}(TM_N)$ for N>1 is not nuclear.

It is easy to check that $\mathbb{F}\mathcal{O}(TM_N)$ maps onto Brown's algebra U_N^{nc} , the universal C^* -algebra generated by the entries of a unitary $N \times N$ -matrix $u = (u_{ij})$, by sending S_{ij} to u_{ij} .

This shows in particular that $\mathbb{F}\mathcal{O}(TM_N)$ for N > 1 is not nuclear.

We may also map $\mathbb{F}\mathcal{O}(TM_N)$ onto the non-unital free product $\mathbb{C}*\cdots*\mathbb{C}$ of N copies of \mathbb{C} , by sending S_{ij} to $\delta_{ij}1_i$, where 1_i denotes the unit element in the i-th copy of \mathbb{C} .

This shows that the algebra $\mathbb{F}\mathcal{O}(TM_N)$ is not unital for N > 1.

It is easy to check that $\mathbb{F}\mathcal{O}(TM_N)$ maps onto Brown's algebra U_N^{nc} , the universal C^* -algebra generated by the entries of a unitary $N \times N$ -matrix $u = (u_{ij})$, by sending S_{ij} to u_{ij} .

This shows in particular that $\mathbb{F}\mathcal{O}(TM_N)$ for N > 1 is not nuclear.

We may also map $\mathbb{F}\mathcal{O}(TM_N)$ onto the non-unital free product $\mathbb{C}*\cdots*\mathbb{C}$ of N copies of \mathbb{C} , by sending S_{ij} to $\delta_{ij}1_i$, where 1_i denotes the unit element in the i-th copy of \mathbb{C} .

This shows that the algebra $\mathbb{F}\mathcal{O}(TM_N)$ is not unital for N > 1.

Conclusion

The algebra $\mathbb{F}\mathcal{O}(TM_N)$ is neither unital, nuclear, nor simple.

Theorem

Let TM_N be the trivial quantum graph as before. Then there exists a *-isomorphism

$$M_N(\mathbb{F}\mathcal{O}(TM_N)^+) \cong M_N(\mathbb{C}) *_1 (C(S^1) \oplus \mathbb{C}),$$

and the quantum Cuntz-Krieger algebra $\mathbb{F}\mathcal{O}(TM_N)$ is KK-equivalent to $C(S^1)$ for all $N \in \mathbb{N}$. In particular

$$K_0(\mathbb{F}\mathcal{O}(TM_N)) = \mathbb{Z},$$

 $K_1(\mathbb{F}\mathcal{O}(TM_N)) = \mathbb{Z}.$

Here $*_1$ denotes the unital free product and $\mathbb{F}\mathcal{O}(TM_N)^+$ is the minimal unitarization of $\mathbb{F}\mathcal{O}(TM_N)$.

If we write $S = (S_{ij})$ for the matrix of generators of $\mathbb{F}\mathcal{O}(TM_N)$, then

- ▶ the generator of $K_0(\mathbb{F}\mathcal{O}(TM_N))$ is represented by the projection $S^*S \in M_N(\mathbb{F}\mathcal{O}(TM_N))$,
- ▶ the generator of $K_1(\mathbb{F}\mathcal{O}(TM_N))$ is represented by the unitary $S (1 S^*S) \in M_N(\mathbb{F}\mathcal{O}(TM_N)^+)$.

Let $B=M_N(\mathbb{C})$ and $\mathrm{tr}:B\to\mathbb{C}$ the normalised trace.

The complete quantum graph $K(M_N(\mathbb{C}), \operatorname{tr})$ on B is determined by the quantum adjacency matrix $A(x) = N^2 \operatorname{tr}(x)$.

Let $B = M_N(\mathbb{C})$ and $\operatorname{tr}: B \to \mathbb{C}$ the normalised trace.

The complete quantum graph $K(M_N(\mathbb{C}), \operatorname{tr})$ on B is determined by the quantum adjacency matrix $A(x) = N^2 \operatorname{tr}(x)$.

Lemma

The quantum Cuntz-Krieger algebra $\mathbb{F}\mathcal{O}(K(M_N(\mathbb{C}), \operatorname{tr}))$ is the universal C^* -algebra with generators S_{ij} for $1 \leq i, j \leq N$ satisfying the relations

$$\sum_{kl} S_{ik} S_{lk}^* S_{lj} = S_{ij}$$

$$\sum_{r} S_{ri}^* S_{rj} = \delta_{ij} N \sum_{rs} S_{rs} S_{rs}^*$$

for all i, j.

Lemma

Let $\mathbb{F}\mathcal{O}(K(B,\mathsf{tr}))$ be as above. Then there exists a surjective *-homomorphism $\phi: \mathbb{F}\mathcal{O}(K(B,\mathsf{tr})) \to \mathcal{O}_{N^2}$ such that

$$\phi(S_{ij}) = \frac{1}{N^{1/2}} s_{ij}$$

for all i, j, where s_{ij} are standard generators of the Cuntz algebra \mathcal{O}_{N^2} .

Proof.

We check

$$\sum_{rs} \phi(S_{ir}) \phi(S_{sr})^* \phi(S_{sj}) = \sum_{rs} \frac{1}{N^{3/2}} s_{ir} (s_{sr})^* s_{sj} = \frac{1}{N^{1/2}} s_{ij} = \phi(S_{ij}),$$

$$\sum_{r} \phi(S_{ri})^* \phi(S_{rj}) = \sum_{r} \frac{1}{N} (s_{ri})^* s_{rj} = \delta_{ij} = \delta_{ij} \sum_{kl} s_{kl} (s_{kl})^*$$
$$= \delta_{ij} N \sum_{kl} \phi(S_{kl}) \phi(S_{kl})^*$$

as required.

Remark

This shows in particular that the canonical linear map $S: B \to \mathbb{F}\mathcal{O}(K(B, \mathsf{tr}))$ is injective. This is not always the case for general quantum Cuntz-Krieger algebras.

Remark

This shows in particular that the canonical linear map $S: B \to \mathbb{F}\mathcal{O}(K(B, \mathsf{tr}))$ is injective. This is not always the case for general quantum Cuntz-Krieger algebras.

Our main structure result regarding $\mathbb{F}\mathcal{O}(K(B, \operatorname{tr}))$ can be stated as follows.

Theorem

The map $\phi : \mathbb{F}\mathcal{O}(K(M_N(\mathbb{C}), \operatorname{tr})) \to \mathcal{O}_{N^2}$ is an isomorphism.

Remark

This shows in particular that the canonical linear map $S: B \to \mathbb{F}\mathcal{O}(K(B, \mathsf{tr}))$ is injective. This is not always the case for general quantum Cuntz-Krieger algebras.

Our main structure result regarding $\mathbb{F}\mathcal{O}(K(B, \operatorname{tr}))$ can be stated as follows.

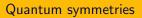
Theorem

The map $\phi : \mathbb{F}\mathcal{O}(K(M_N(\mathbb{C}), \operatorname{tr})) \to \mathcal{O}_{N^2}$ is an isomorphism.

In fact, we can prove the following stronger result:

Theorem

Let B be an n-dimensional C^* -algebra and let $\psi : B \to \mathbb{C}$ be a δ -form satisfying $\delta^2 \in \mathbb{N}$. Then $\mathbb{F}\mathcal{O}(K(B,\psi)) \cong \mathcal{O}_n$.



A magic unitary $N \times N$ -matrix is a matrix $u = (u_{ij})$ such that

$$u_{ij}=u_{ij}=u_{ij}^*$$

and

$$\sum_{k=1}^{n} u_{kj} = 1, \qquad \sum_{k=1}^{n} u_{ik} = 1$$

That is, all entries of u are projections and all row and columns sum to the identity.

Example

A magic unitary $u \in M_n(\mathbb{C})$ is the same thing as a permutation matrix.

A magic unitary $N \times N$ -matrix is a matrix $u = (u_{ij})$ such that

$$u_{ij}=u_{ij}=u_{ij}^*$$

and

$$\sum_{k=1}^{n} u_{kj} = 1, \qquad \sum_{k=1}^{n} u_{ik} = 1$$

That is, all entries of u are projections and all row and columns sum to the identity.

Example

A magic unitary $u \in M_n(\mathbb{C})$ is the same thing as a permutation matrix.

Definition (Wang 1998)

The quantum permutation group S_n^+ is the universal C^* -algebra $C(S_n^+)$ generated by the entries of a magic unitary $n \times n$ -matrix $u = (u_{ij})$.

If $E = (E^0, E^1)$ is a simple finite graph then the automorphism group Aut(E) consists of all bijections of E^0 which preserves the adjacency relation in E.

If $|E^0| = N$ and $A \in M_N(\mathbb{Z})$ is the adjacency matrix of E, then this can be expressed as

$$\operatorname{Aut}(E) = \{ \sigma \in S_N \mid \sigma A = A\sigma \} \subset S_N,$$

where one views elements of the symmetric group as permutation matrices.

If $E = (E^0, E^1)$ is a simple finite graph then the automorphism group Aut(E) consists of all bijections of E^0 which preserves the adjacency relation in E.

If $|E^0| = N$ and $A \in M_N(\mathbb{Z})$ is the adjacency matrix of E, then this can be expressed as

$$\operatorname{Aut}(E) = \{ \sigma \in S_N \mid \sigma A = A\sigma \} \subset S_N,$$

where one views elements of the symmetric group as permutation matrices.

Definition (Banica)

The quantum automorphism group $G^+(E)$ of the graph E is the C^* -algebra

$$C(G^+(E)) = C(S_N^+)/\langle uA = Au \rangle,$$

where $u = (u_{ij}) \in M_N(C(S_N^+))$ denotes the defining magic unitary matrix.

This yields a quantum subgroup of S_N^+ , which contains the classical automorphism group $\operatorname{Aut}(E)$ as a quantum subgroup.

Let $\mathcal{G} = (B, \psi, A)$ be a quantum graph.

We say that an action $\beta:B\to B\otimes \mathcal C(G)$ of a compact quantum group G is

- ψ -preserving if $(id \otimes \psi)\beta(x) = \beta(x)1$ for all $x \in B$,
- compatible with $A: B \to B$ if $\beta \circ A = (A \otimes id) \circ \beta$.

Let $G = (B, \psi, A)$ be a quantum graph.

We say that an action $\beta: B \to B \otimes C(G)$ of a compact quantum group G is

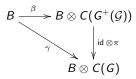
- ψ -preserving if $(id \otimes \psi)\beta(x) = \beta(x)1$ for all $x \in B$,
- compatible with $A: B \to B$ if $\beta \circ A = (A \otimes id) \circ \beta$.

Definition

Let $\mathcal{G}=(B,\psi,A)$ be a quantum graph. The quantum automorphism group $G^+(\mathcal{G})$ of \mathcal{G} is the universal compact quantum group equipped with a ψ -preserving action $\beta:B\to B\otimes C(G^+(\mathcal{G}))$ which is compatible with the quantum adjacency matrix A.

That is, the quantum automorphism group $G^+(\mathcal{G})$ has the following universal property.

If G is a compact quantum group and $\gamma: B \to B \otimes C(G)$ an action of G which preserves ψ and is compatible with A, then there exists a unique morphism $\pi: C(G^+(\mathcal{G})) \to C(G)$ such that



commutes.

Theorem

Let $\mathcal{G}=(B,\psi,A)$ be a quantum graph. Then the canonical action $\beta:B\to B\otimes C(G^+(\mathcal{G}))$ of the quantum automorphism group of \mathcal{G} induces an action $\hat{\beta}:\mathbb{F}\mathcal{O}(\mathcal{G})\to\mathbb{F}\mathcal{O}(\mathcal{G})\otimes C(G^+(\mathcal{G}))$ such that

$$\hat{\beta}(S(b)) = (S \otimes id)\beta(b)$$

for all $b \in B$.

This generalises to actions of the linking algebras of quantum isomorphic quantum graphs.

The latter is key to the proof of our main theorem on quantum Cuntz-Krieger algebras associated with complete quantum graphs.